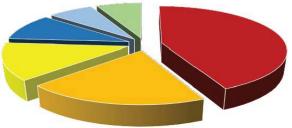
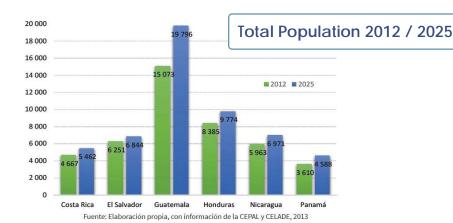
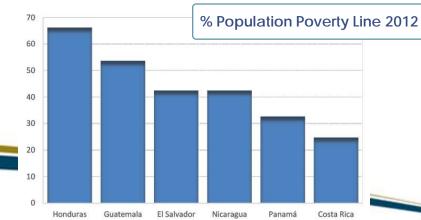


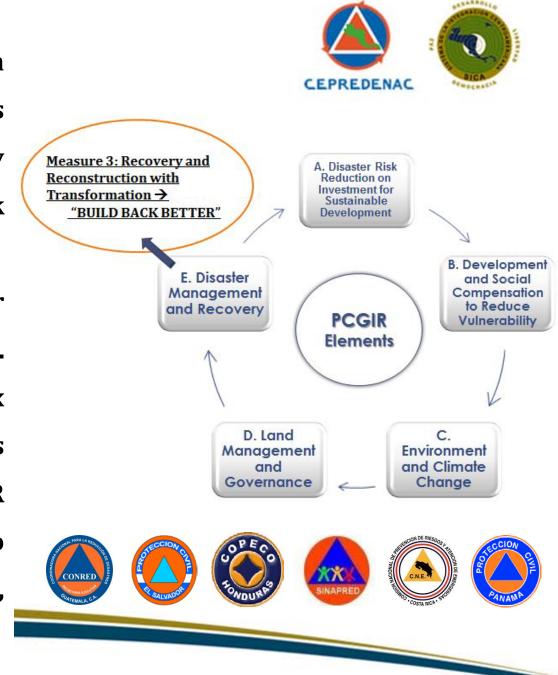
GDP (millions US\$) 2012


GDP P C (millions US\$) 2012





Population Density 2013



CEPREDENAC

In charge of coordination of DRR in C.A. armonizing six national systems through the Central American Policy on Comprehensive Disaster Risk Management (PCGIR).

CEPREDENAC promotes multi-sector works with commong guidelines. During 2015, CEPREDENAC held six national and one regional workshops on the Sendai Framework on DRR 2015-2030, initiating dissemination to over 40 institutions/450 regional, national and local personnel.

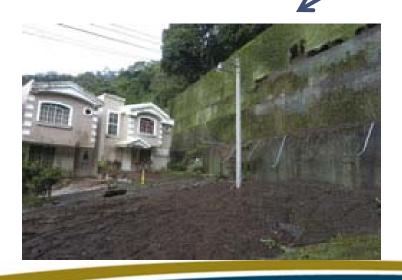
Since 2012, Central America has worked in developing National Recovery Frameworks, based on experiences of recovery, rehabilitation and reconstruction.

CEPREDENAC promotes more effective and inclusive DRR planning with multiple sectors (Economy, Planning and Land Use, Construction) and Local-Municipal Governments.

Multi-sectorial and technical commissions coordinate the recovery process after the occurrance of disasters. Specific protocols of action follow a "transformation towards development" approach.

1. Las Colinas Landslide El Salvador 2001

3. Cambray II Landslide Guatemala 2015



1. Las Colinas Landslide El Salvador 2001

CONTEXT

National event: Earthquake 7.6

Local event: Landslide

Victims: 604

Household losses: 200

EARLY STAGES

- Ad-hoc multi-sector commission: response oriented
- Centralized response and coordination
- Search and Rescue; Relief and Assistance Actions

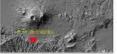
RECOVERY (4-18 months)

- Assessment stage: site offlimits; identification of affected families.
- Initial proposal: economic compensation on land loss; memorial monument on site.
- Municipality and Local association increase level of involvement.
- Ad-hoc coordination facilitates social, health and psychological support. No systematic previous mechanism.

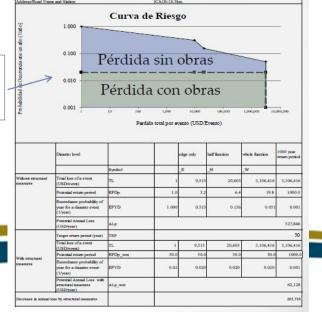
(2-5 years)

- Municipality develops DRR management: EWS, coordination units, mapping tools.
- New assessment studies guide mitigation works on affected site.
- Lessons learned at technical and scientific level applied in metropolitan area.
- Re-open case on relocation of original Las Colinas residents.

Municipality and DRR System develop mitigation works and prevention measures: shift from response to management



Investigación MICROTREMORES ZONA URBANA DE SANTA TECLA



Mapa de malla de medidas de microtremores Zona Centro-Norte. Município Santa Tecla. Escala 1:6.250

Elaborado por: Benancio Henríquez y Francisco Barahona

Cost-Benefit Analysis with DRR measures

Research for land use and risk reduction; planning for development

Risk Assessment S	heet 1: Pote	ntial Annual Lo	SS	For I	Hillside Slope
Site ID		7.5	5.45		
Department:	San Salvador	Municipality:	Delgado	Village/Neighborhood: 0	
Address/Road Name and	Station	CA1E-18.5km			
Probable event situation					
liem			Symbol	Competation Formula	Quantity
Probable length of damage along infrastructure for each diseaser magnitude (km)	edge only		LN_E	14 10 0 Marine Carrier	0.01
	half function		IN_H		0.03
	whole function		IN W		0.06
Volumen de Tránsito Vehicular (vehiculos/dis)	Automobile		TPPA_AU		8,35
	pick-up		TPDA_PU		4,96
	Microbas		TPDA_MB		26
	Autoba		TPDA_AB		88
	Carga C2: Carrion 2 ejes		TPDA_C2		28
	Cargo C3: Carnion 3 ejen		TPDA_C3		21
	Cargo T: Cabral 2-3 ejes, Rustra 2-3 ejes		TPDA_T		1,36
Total de Transito Vehicular	(vehicular/dia)		TDPA		16,38
Promedio de costo de operación en tramo evaluado (USDA:m/vehiculos)			AVOCA		0.4
Promedio de costo de operación en tramo de desvió(USD/km/vehiculos)			AVOCB		0.4
Velocidad promedio en tramo evaluado (km/hora)			AVVA	\$3.6	
Velocidad promedio en tramo de desvio (km/hora)			AVVD	37.7	
Valor del tiempo promo dio por vehiculo (USD/hora/vehiculo)			ATVV		8.5
Promedio de pasajeros por vehículo			ANPSV		4.0

Carlo Brenes	AL _p =	Curva de riesgo	327,846
			0.051
mois	EPYD_H=	1/6PBDp_H	0.156
beede	EPYD_E =	LRPBDp_E	0.313
complets	RPDp_F=		19.8
media	RPDp_H=	Riga de enclassion de ringo	6.4
borde	RPDp_E =		3.2
a de transito	TL =	RC+HLL+VL+LT+LOPI+LPP	3,106,416
Pérdida de propiedad privada por evento (USD/evento)		LPP	
(event)	LOPI	LOPI	
	LD=	TDPA x NCDp x ((AWXCD x LRD - AVXXA x LRA) + (LRD/AVVD - LRA/AVVA) x ATVV)	2,828,608
	NCDp_F	NCDp_F	
	VL_P=	NVAE_E x 11.5 x AVVA	1,648
a (USD/event)	HLL_P-	NVAE_E x ANPSOPV x 0.5 x UHLL	226,159
	NVAE_F = LE	NVAE_F=LB_E/AVVA/24/TDPA	
	borde moža completa borde moža	(SD/event) HLL P- VL P- NCDp F LD = Sevent) LDP Vevento LPP M NC USESSIM TL = beede IPOp E = complete IPOp F = beede IPOp F = beede IPOp E = beede IPOp E = Sevento IPOp E = Sevento IPOp IPOp IPOp IPOp IPOp Sevento IPOp IPOp IPOp IPOp IPOp Sevento IPOp IPOp IPOp IPOp IPOp Sevento IPOp IPOp IPOp IPOp IPOp IPOp Sevento IPOp IPOp	VI_F NVAE_E x 0.5 x AVVA

CURRENT SCENARIO

- Santa Tecla as Champion City on DRR.
- Permanent coordination structures and mechanisms for recovery.
- Consultation and technical input for establishing the NRF.
- Housing project for 150 affected families to follow completion of third major mitigation work.

Lessons during Timeline 2001-2016

- Ad-hoc response and emergent coordination structures delay recovery process.
- Lack of/ insufficient knowledge on legal and operative frameworks hinders coordination.
- DRR capacity generation is key to transform negative/slow results into lessons to promote development.

2. Cinchona Landslide Costa Rica 2009

CONTEXT

National event: Earthquake 6.2

Local event: Landslide

Victims: 30

Household losses: 93

EARLY STAGES

- Ad-hoc multi-sector commission: recovery oriented
- Inter-institutional coordination with local government and families
- Quick shift from response to recovery

RECOVERY (0-4 months)

- Assessment stage: site offlimits; identification of affected families.
- Initial proposal: relocation of 91 families, broad consultation.
- DRR authority leading the process with municipality and local association.
- Systematic process to ensure economy reactivation and basic services.

(5-20 months)

- Affected families and multi-sector technical commission establish new area for relocation.
- Site assessment and preparation with neighbor communities.
- Private sector and academia provide technical support.
- Design and construction of new Cinchona community and local production network.

DRR System proposed and implemented a recovery process with a comprehensive approach from the beginning

20-25 months

- 91 families receive new houses in New Cinchona.
- Recovery process includes yearly assessment of resinsertion.

Lessons during Timeline 2009-2011

- Inclusive participation contributes to efficient process.
- Local participation provides valuable input regarding cultural and social aspects.
- Multi-sector involvement and committment demonstrated through technical and economic support ensures development continuity.

3. Cambray II Landslide Guatemala 2015

CONTEXT

Local event: Landslide

 Trigger Factors: Seasonal heavy rain / Precarious location

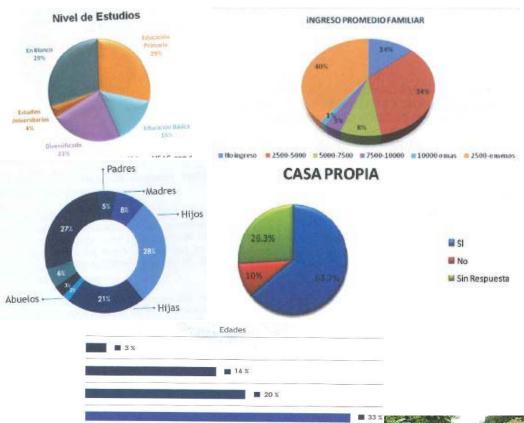
Victims: 350

Household losses: 73

Affected population: 472

EARLY STAGES

- Activation of multi-sector
 Recovery Commission and NRF
- Search and Rescue; Evacuation;
 Relief and Assistance Actions
- Inter-institutional coordination with local government and families


RECOVERY (0-1 months)

- Assessment stage: site off limits, adjacent evacuations, identification of affected families.
- Initial proposal: Relocation process, on-going shelters until economic support is provided.
- DRR authority leading the Recovery Commission with local involvement.
- Immediate activation of basic services provision.

(2-3 months)

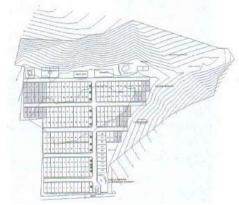
- Recovery commission, including affected families, establish new area for relocation.
- Site assessment and preparation with neighbor communities.
- Phase 1 Planning: construction of 30 houses of new community.
- Legal situation on house ownership delays planning for following phases.

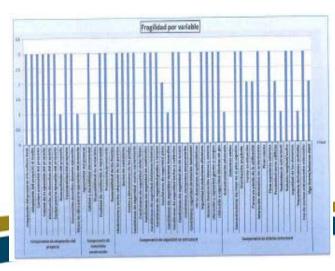
15-30

■ No. de Personas

Activation of NRF and establishment of Recovery Plan: inclusive process building on experiences of previous recovery plans

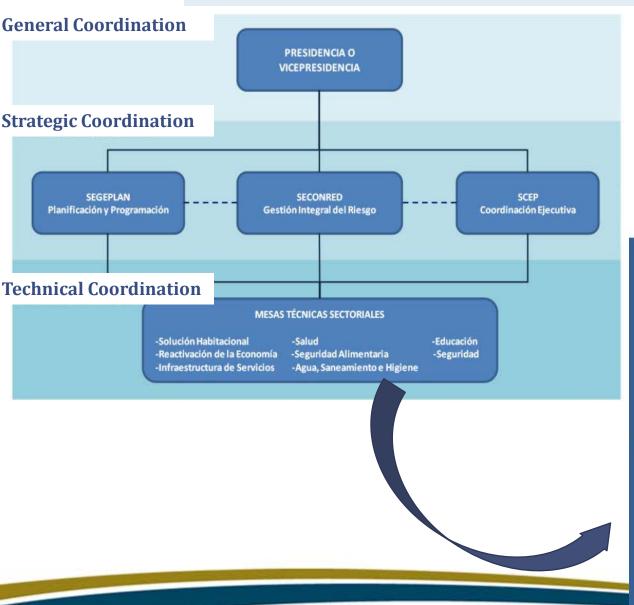
Research for land use and risk reduction: Planning for Development



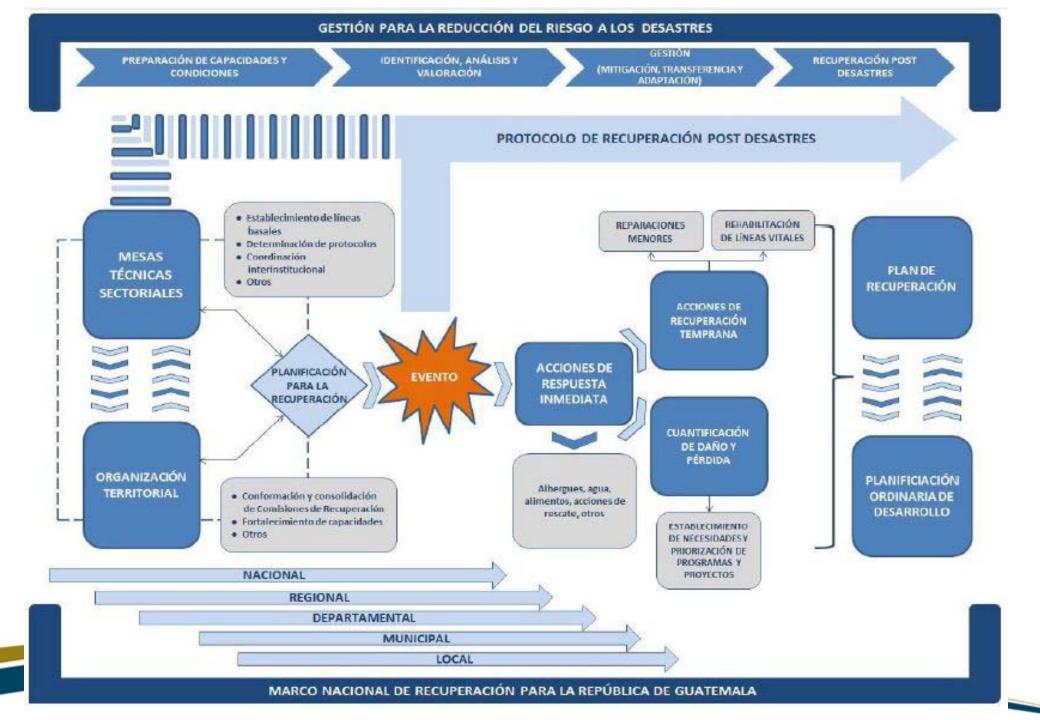


Current Situation

- 1st phase to be completed with 30 new houses.
- Donations and emergency funds: first availability.
- Public funds: committed but yet to be used.
- Recovery process to assess measures in regarding economic/labor related needs.


Lessons learned during Timeline 2015-2016

- Existence of NRF and Recovery Plans highly increases timely results.
- Training on recovery protocols increases level of participation of sectors and governments.
- DRR authority's assessments need to acquire stronger / binding influence on other development-related actores.
- Lack of fixed criteria to access recovery funds hinders fluent process.
- Alliance with private sector important as recovery actors.


Multi-Sector Recovery Commission

CONCLUSIONS

- SE STEROLIO
- Multi-sector mechanisms and institutionalized action protocols increase the efficiency of the recovery process.
- Recovery time will reduce if legal aspects on land/housing/production assets are well defined previous to a disaster occurrence.
- Development continuity requires equally-responsible partners in DRR: economy (public and private), land use and planning, academia, local governments.
- Improved recovery in urban areas: previous joint work with Land Use & Planning.
- Improved recovery in rural areas: previous joint work with production sectors.
- DRR and other sectors must commit funds specifically to comprehensive recovery to avoid HIGH RISK of funding only RESPONSE.
- Research (technical aspects & cost-benefit analysis) increases multi-sector support and belief in "DRR ensures development continuity".
- Common DRR guidelines promoted by CEPREDENAC/implemented by National Authorities allow for identifying and building up on good practices.